Colliding and merging planets (C)
This example integrates a densely packed planetary system which becomes unstable on a timescale of only a few orbits. The IAS15 integrator with adaptive timestepping is used. The bodies have a finite size and merge if they collide. Note that the size is unphysically large in this example.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include "rebound.h"
void heartbeat(struct reb_simulation* r);
int main(int argc, char* argv[]){
struct reb_simulation* r = reb_create_simulation();
r->dt = 0.01*2.*M_PI; // initial timestep
r->integrator = REB_INTEGRATOR_IAS15;
r->collision = REB_COLLISION_DIRECT;
r->collision_resolve = reb_collision_resolve_merge; // Choose merger collision routine.
r->heartbeat = heartbeat;
struct reb_particle star = {0};
star.m = 1;
star.r = 0.1;
reb_add(r, star);
// Add planets
int N_planets = 7;
for (int i=0;i<N_planets;i++){
double a = 1.+(double)i/(double)(N_planets-1); // semi major axis in AU
double v = sqrt(1./a); // velocity (circular orbit)
struct reb_particle planet = {0};
planet.m = 1e-4;
planet.r = 4e-2; // radius in AU (it is unphysically large in this example)
planet.lastcollision = 0; // The first time particles can collide with each other
planet.x = a;
planet.vy = v;
reb_add(r, planet);
}
reb_move_to_com(r); // This makes sure the planetary systems stays within the computational domain and doesn't drift.
reb_integrate(r, INFINITY);
}
void heartbeat(struct reb_simulation* r){
if (reb_output_check(r, 10.*2.*M_PI)){
reb_output_timing(r, 0);
}
}
This example is located in the directory examples/mergers